Contents

Introduction 3
1 Towards a common framework for ESG in advanced manufacturing 5
 1.1 Five high-impact areas 6
 1.2 The next level of granularity for ESG in advanced manufacturing 7
 1.3 Providing evidence 8
2 The way forward 10
Contributors 11
Endnotes 12

Disclaimer
This document is published by the World Economic Forum as a contribution to a project, insight area or interaction. The findings, interpretations and conclusions expressed herein are a result of a collaborative process facilitated and endorsed by the World Economic Forum but whose results do not necessarily represent the views of the World Economic Forum, nor the entirety of its Members, Partners or other stakeholders.

© 2022 World Economic Forum. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, including photocopying and recording, or by any information storage and retrieval system.
Introduction

Advanced manufacturing supporting companies transition to stakeholder capitalism while driving productivity and efficiency.

Global megatrends – such as climate change, geopolitical shifts and the continuous emergence of disruptive technologies, as well as the COVID-19 pandemic – have made sustainability issues, and environmental, social and governance (ESG) metrics even more pressing for executives, boards and policy-makers.

Leaders across industries – from mining and metals, chemical industries, life sciences and oil and gas, to automotive and aerospace – are looking for new ways to adopt new metrics within their operations and supply chain ecosystems and accelerate the transition towards stakeholder capitalism. However, many are still struggling with data availability, accuracy and consistency to measure and track the progress of existing and new applications and there are still no standard benchmarks.

In this context, companies in advanced manufacturing – from machinery and robotics to software and providers of technologies and solutions – have a unique opportunity to address the above challenges while solving business problems across industries. Advanced manufacturing can help accelerate the transition to ESG reporting across areas such as:

1. Innovation: Leveraging innovative technologies and solutions to address business problems while driving growth and keeping track of sustainability impact.

2. Workforce: Empowering workers with new technology, tools and solutions, enhancing the adoption of new sustainable metrics.

Understanding this urgency, the Advanced Manufacturing Industry Community action group at the World Economic Forum came together to design a common framework for the industry to measure the impact of solutions and technologies on sustainability metrics (i.e. ESG) and then support companies’ transition to stakeholder capitalism. The intent is not to create new standards but to shed light on the role that advanced manufacturing can play as an enabler for companies across the entire value chain.

The framework highlights the role of advanced manufacturing across three dimensions. First, it shows how advanced manufacturing is driving both productivity and efficiency, as well as supporting the tracking and reporting of sustainability metrics (people, planet, prosperity) in specific areas. Second, it provides an overview of specific ESG metrics in the advanced manufacturing ecosystem. Finally, it provides a common mechanism to benchmark and then set up new sustainable goals.

In this briefing paper, we present an application of this framework. Section 1.1 shows a selection of more than 25 use cases across multiple industries, where advanced manufacturing is already easing the adoption of ESG metrics while driving growth and sustainability value. These use cases are classified into five high-impact areas. Based on this sample analysis, we identify key performance indicators (KPIs) for the advanced manufacturing ecosystem (section 1.2) and present two concrete applications to provide evidence of the role of advanced manufacturing in specific impact areas (section 2.3).

We also describe the business challenges addressed and the enabling technologies.

We hope that these insights help mobilize the global manufacturing community across sectors and geographies to support the dissemination and adoption of the new sustainability metrics and enable consistent, evidence-based reporting.
Although significant progress has been made developing the above set of 21 core stakeholder capitalism metrics drawn from existing standards and frameworks, there is still a need for more industry-specific key performance indicators (KPIs) to benchmark against peers.

Towards a common framework for ESG in advanced manufacturing

Industry 4.0 in advanced manufacturing offers other industries the ability to more accurately measure and report ESG metrics.
Advanced manufacturing plays a unique role in driving both productivity and efficiency and enabling companies to track sustainability metrics (people, planet, prosperity). The Advanced Manufacturing Industry Community has identified more than 25 existing use cases where its technologies and solutions are already enabling sustainability and profitability. Based on the use cases submitted, five high-impact areas across the value chain emerged for ESG in advanced manufacturing (see Figure 2).

1. Supply chain sourcing and logistics

Optimize supplier landscape and logistics systems to increase resilience enabled by transparency and traceability, allowing companies to accurately track and report on ESG metrics.

Use cases:
- Digital sustainability twin
- Simulation ecosystem
- Logistics optimization
- Physical climate risk
- Supply chain management
- On-time deliveries
- Inventory management
- Transparency and traceability
- Risk management

2. Circular economy

Advance innovation in product design and services to enhance time to market, availability and the transition to a low-carbon circular economy.

Use cases:
- Product carbon footprint
- Life cycle analysis
- New process design
- Virtual machine commissioning
- Remanufacturing and repair services

3. Net-zero energy and emissions

Expand use of efficient and low-carbon energy systems enabled by new solutions to reduce costs, track emissions and accelerate the transition towards net zero for scopes 1 and 2.

Use cases:
- Carbon accounting reporting
- Microgrid with energy storage
- Power purchase agreements
- Industrial energy management
- Smart water management
- Variable frequency drives for energy efficiency
- Continuous emissions monitoring

4. Operations and maintenance

Monitor and control assets in real-time to improve overall equipment effectiveness with data-driven decision-making while simultaneously tracking and reporting progress towards ESG goals.

Use cases:
- Real-time asset performance monitoring and visualization
- Quality sensing
- Process optimization
- Overall equipment effectiveness
- Predictive maintenance
- Remote monitoring
- Paperless operations

5. Empowered workforce

Empower workers through technology, new tools and solutions to foster a productive and inclusive manufacturing ecosystem, while increasing engagement and retention.

Use cases:
- Operator training
- Work process analysis
- Virtual training
- Work instructions assistance
- Safety compliance
- Hazard alerts/detection
- Emergency shutdown
- Augmented Reality inspection for debugging
- Mitigating ergonomic risks
- Immersive visual learning

Source: World Economic Forum and Advanced Manufacturing Industry Community
The next level of granularity for ESG in advanced manufacturing

As mentioned in the introduction, the Stakeholder Capitalism Metrics (SCM) includes 21 industry-agnostic core metrics. This section presents a sample of specific ESG metrics for advanced manufacturing, identified by the community as industry specific KPIs based on the use cases (see Figure 3).

FIGURE 3
Sample of advanced manufacturing ESG metrics and KPIs

<table>
<thead>
<tr>
<th>Pillar</th>
<th>Metrics</th>
<th>KPI (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Greenhouse gas emissions</td>
<td>Carbon footprint: tonnes (t) CO₂ equivalent (e-)
Process emissions: volatile organic carbons* (VOCs)
Transportation (fleet, distribution, logistics): miles travelled
Energy cost (global, regional, site, asset, device): $
Energy intensity (megawatt per hour (MWh)/ unit produced)
Low carbon energy: % renewable, % carbon captured, % energy storage</td>
<td>…</td>
</tr>
<tr>
<td>2. Water</td>
<td>Water intensity: thousand cubic meters (m³) / unit produced
Water recovery & reuse: % recovered
Waste-water treatment/Effluent: % treated, efficiency unit ops
Physical climate risk (future)</td>
<td>…</td>
</tr>
<tr>
<td>3. Materials & waste</td>
<td>Waste intensity: tonnes (t)/unit produced
Quality and yield optimization (avoided raw material waste): tonnes (t)/year
Waste sent to landfill: %
Repaired waste: tonnes/year
Recycled content in new products: %
Sustainable packaging materials: % recyclable</td>
<td>…</td>
</tr>
<tr>
<td>4. People health & safety</td>
<td>Total recordable incident rate: injury rates/total employees
Well-being of employees (future)</td>
<td>…</td>
</tr>
<tr>
<td>5. Training</td>
<td>Training time: # hours spent, $ cost</td>
<td>…</td>
</tr>
</tbody>
</table>

The complete list of use cases is available on the community site.

Source: World Economic Forum and Advanced Manufacturing Industry Community
Companies across industries are looking for common mechanisms to benchmark their ESG performance and facilitate the application and implementation of ESG metrics as a source of value creation for advanced manufacturing and value chain ecosystems. Proper benchmarks allow companies to set up new sustainable goals and raise ambition. From the sample analysed, the two most common impact areas that advanced manufacturing technology and solutions are enabling today in terms of profitability and sustainability are net-zero energy and emissions, and an empowered workforce. Figure 4 shows the application of this framework for two use cases.

Impact dimension

<table>
<thead>
<tr>
<th>Net-zero energy and emissions</th>
</tr>
</thead>
</table>

ESG use case

Real-time energy management

Description

Real-time energy information systems provide visibility into energy usage/storage and operations at the equipment level to better understand, manage, report on and benchmark the performance of energy-consuming processes. This includes assets responsible for heating and cooling process areas such as boilers, chillers, heat pumps and combined heat and power applications, as well as renewable energy, storage and industrial operational energy efficiency.

Business challenges

- Data is auditable
- Reduce greenhouse gas emissions to comply or meet goals
- Upfront infrastructure to achieve granular energy monitoring
- Monitor and improve energy consumption to reduce cost per unit
- Resilient energy
- Cost: Make non-value-adding energy consumption transparent to implement optimization measures on shop floor level
- Risk management integration
- Supply chain data sharing that is authenticated and trusted
- Government compliance, regulations, fines/fees

Enabling technologies

- Secure network infrastructure
- Simulation/modeling tools to analyze current and future energy demand depending on location, climate, use and goals
- Cloud infrastructure
- Manufacturing execution system to allocate energy measurements
- Advanced analytics
- Industrial energy management software
- Digital monitoring and control
- Internet of Things, connected meters, flow instrumentation

KPI improvements

<table>
<thead>
<tr>
<th>Prosperity</th>
<th>Impact range observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productivity increase (time savings)</td>
<td>4-15%</td>
</tr>
<tr>
<td>Overall equipment effectiveness (OEE)</td>
<td>2-43%</td>
</tr>
<tr>
<td>Operating cost reduction</td>
<td>10-40%</td>
</tr>
<tr>
<td>Maintenance cost reduction</td>
<td>Not observed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planet</th>
<th>Impact range observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG emissions Scope 1 and Scope 2 (tCO₂-e)</td>
<td>15-100%</td>
</tr>
<tr>
<td>Low carbon energy (% onsite renewable, % captured, % storage)</td>
<td>7-30%</td>
</tr>
<tr>
<td>Energy intensity (kilowatt-hour (kWh) per unit produced)</td>
<td>13-30%</td>
</tr>
<tr>
<td>Water intensity (m³ per unit produced)</td>
<td>2-20%</td>
</tr>
<tr>
<td>Physical climate risk (future)</td>
<td>Not observed</td>
</tr>
</tbody>
</table>

Source: World Economic Forum and Advanced Manufacturing Industry Community

Towards a Common Framework for ESG in Advanced Manufacturing 8
FIGURE 4

Use case examples (continued)

<table>
<thead>
<tr>
<th>Impact dimension</th>
<th>ESG use case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empowered workforce</td>
<td>Remote training</td>
<td>Provide digital tools to enable workers to optimally run process, ensure proper set up and quickly troubleshoot issues.</td>
</tr>
</tbody>
</table>

Business challenges

- Workforce shortages
- Loss of knowledge
- Long ramp-up period for new line workers
- High training cost and travel requirements
- Reliance on full-time on-site trainers
- Trainer-to-trainer inconsistencies
- Faster and effective inspections with predictive intelligence
- Improved worker safety/reduced fatalities
- Proficiency gained before real-world experience and increased availability of ongoing training

Enabling technologies

- Wearable computers with software
- Secure remote connectivity
- Digital tools for visibility
- Maintenance documentation, subject matter to document process, etc.
- Employees willing to use technology

KPI improvements

<table>
<thead>
<tr>
<th>KPI improvements</th>
<th>Impact range observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosperity</td>
<td></td>
</tr>
<tr>
<td>Productivity increase (time savings)</td>
<td>4-220%</td>
</tr>
<tr>
<td>OEE increase</td>
<td>up to 12%</td>
</tr>
<tr>
<td>Operating cost reduction</td>
<td>20%</td>
</tr>
<tr>
<td>Maintenance cost reduction</td>
<td>Not observed</td>
</tr>
<tr>
<td>Planet</td>
<td></td>
</tr>
<tr>
<td>GHG emissions (avoided distance travel)</td>
<td>80-90%</td>
</tr>
<tr>
<td>Waste intensity (t/unit produced)</td>
<td>4-80%</td>
</tr>
<tr>
<td>Quality optimization avoided raw material</td>
<td>20-50%</td>
</tr>
<tr>
<td>Repaired waste</td>
<td>up to 60%</td>
</tr>
<tr>
<td>People</td>
<td></td>
</tr>
<tr>
<td>Training (# hours per employee)</td>
<td>Increase 50-100%</td>
</tr>
<tr>
<td>Zero injury goals</td>
<td>Not observed</td>
</tr>
<tr>
<td>Reduced employee turnover</td>
<td>Not observed</td>
</tr>
</tbody>
</table>

Source: World Economic Forum and Advanced Manufacturing Industry Community
The way forward

Even though there is evidence of solutions and technologies in advanced manufacturing easing the adoption of ESG metrics, there is still significant value creation to unlock in innovative impact areas. This can be done by adopting new tracking and reporting methods enabled by advanced manufacturing and fostering the exchange of best practices and benchmarking. In the coming months, the framework presented in this briefing paper will be used to mobilize action by advanced manufacturing companies. It aims to help companies in advanced manufacturing to engage with other industries and policy leaders, fostering greater collaboration towards common ESG metrics and accelerating the transition towards stakeholder capitalism. This includes:

Short term
- Developing a new shared narrative on how advanced manufacturing solutions have increased productivity and sustainability.
- Collecting and sharing best practices and solutions that leverage advanced manufacturing technologies to ease the adoption of ESG metrics, and capturing key enablers and exploring opportunities with adjacent industry groups.
- Facilitating discussions with sustainability and operational leaders that help inform the development of companies’ and countries’ strategies on ESG.

Long term
- Agreeing on a common reporting and benchmarking approach to measure the real impact that advanced manufacturing is enabling.
- Helping small to medium-sized businesses to adopt ESG for value creation, focusing efforts on the specific pain points of smaller companies.
Contributors

World Economic Forum

Felipe Bezamat
Head of Advanced Manufacturing Industry

Alexandra Schwertner
Sustainability Strategy and Technology
Leader, Rockwell Automation; Project Fellow,
World Economic Forum

Advanced Manufacturing Community

The World Economic Forum thanks the members of the Advanced Manufacturing Community Action Group Senior Deputies for their active contributions and participation in working groups, interviews and community discussions:

Bruce Albrecht
Vice-President Innovation and Technology,
Welding Products Segment, Illinois Tool Works

Sudhi Bangalore
Chief Technology Officer and Global Vice-President,
Global Operations, Stanley Black & Decker

Gunter Beitinger
Senior Vice-President, Manufacturing;
Head, Factory Digitalization, Siemens

Frank L. Blaimberger
Vice-President, Global Head Advanced Manufacturing, TÜV SÜD

Tim Challingsworth
Chief of Staff, II-VI

Sujeet Chand
Senior Vice-President and Chief Technology Officer,
Rockwell Automation

Martin Cotter
Senior Vice-President, Industrial,
Consumer and Multi-Markets, Analog Devices

Klaus Decking
Head, Group Strategy and Business Development,
OC Oerlikon Management

Walter Delph
Chief Business Officer, Magic Leap

Claude Dinsmoor
Vice-President, Product Development,
FANUC America

Justin Hester
Senior Director, Digital Transformation Group, PTC

Jackie Jung
Vice-President Global Operations Strategy, Center of Excellence and Chief of Staff, Western Digital

Philipp Jung
General Manager of Arize and Senior Vice-President of Orthotic Solutions, HP

Nicholas Leeder
Vice-President, Digital Transformation Solutions, PTC

Thierry Mabru
Senior Vice-President, Integrated Supply Chain,
Garrett Motion

Cyril Perducat
Senior Vice-President and Chief Technology Officer,
Rockwell Automation

Friedrich Richter
Senior Vice-President, Strategy, Industrial Automation and Segments, Schneider Electric

Robert Slone
Senior Vice-President and Chief Scientist, UL

Eduardo Toledo
Vice-President, Business Excellence, Flex
Endnotes

The World Economic Forum, committed to improving the state of the world, is the International Organization for Public-Private Cooperation.

The Forum engages the foremost political, business and other leaders of society to shape global, regional and industry agendas.